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1. Introduction

Automatic sound identification is one of the major goals of underwater acoustics. Quieting
techniques have greatly reduced the principal sources of acoustic energy used for detection and
classification by passive sonar. However, short duration transient signals may be used to detect and
classify underwater sources. The success of any classification scheme depends to a large extent on
the specific preprocessing techniques used to extract information regarding the features of the various
classes of signal under study. This study explores modeling and wavelet decompositions as feature
extraction techniques applied to underwater signals. The AR technique chosen uses the reduced-rank
covariance method which combines the traditional covariance method with the singular value
decomposition to reduce the effect of additive noise in the signal. Two implementations of the
wavelet transform are considered in the study: the decimated orthonormal wavelet transform and the
non-orthonormal A-Trous decomposition. Feature vectors obtained from the 3 types of
decompositions considered in this study are used as inputs to a two hidden layer back- propagation
network, and the resulting performances compared.

Section 2 describes the various underwater signals selected for our study. Section 3 reviews
the reduced-rank AR covariance method. Section 4 presents results obtained by applying an ALE
filter to denoise the data under considered. Section 5 introduces the wavelet transforms considered
in this work. Classification results are presented in Section 6. Finally, Section 7 presents conclusions
and suggestions for further research .

2. Signals Description

The recordings used in our study were of real, open ocean encounters from various signal
collection platforms. The signals, as an artefact of the collection procedures, were all corrupted with
background noises, which included sounds from ships, small boats, and other disturbances occurring
in the natural environment, plus artificial noise from the means of collection. Six different classes of
signals were selected for our study:

e Sperm whale,

« Killer whale,

« Humpback whale,

o Gray whale,

« Pilot whale,

« Underwater earthquake.

Each recording varied in length between fifteen to thirty seconds. Each signal was digitized
on a 486 PC using a Media Vision Pro Audio Spectrum sound card with a sampling frequency equal
to 8kHz, using a single channel and 8 bits per sample. Figures 2.1 to 2.7 present typical time-domain
traces and spectrograms obtained from the various classes of signals considered. Four out of five
classes of underwater biological signals where cuts from what is commonly known as “whale songs”
and where narrowband in nature, while sperm whale and earthquake recordings of a wider range of




frequencies as compared to other types of biological data. The sperm whale recordings were of the
animal’ s echo ranging sonar, and constituted of very short and rapid wideband pulses.

3. Reduced-Rank AR Modeling

AutoRegressive (AR) modeling is a time-domain technique used for modeling a set of data
as the output of an all-pole Linear Time-Invariant (LTI) filter. Estimation of the filter coefficients
may be carried out in a least squares sense by solving the Yule-Walker equations [1,10].
Degradations due to noise may be decreased by using a truncated inverse of the data matrix defined
in the Yule Walker equations to solve for the AR coefficients. Such a truncated inverse is computed
using the Singular Value Decomposition (SVD), and this approach has been used extensively in signal
processing applications. This section briefly reviews the concept of AR modeling and the reduced-
rank AR modeling method used in the study.

3.a Autoregressive Modeling

Autoregressive (AR) modeling is based on the idea that a signal x(17) can be expressed as the
output of an all-pole linear shift invariant filter driven by white noise. Thus, x(n)is given by the
following expression:

p

x(n)=-Y_ a(k)x(n-k)+b,w(n), (3.1)

k=1
where P is the order of the predictor, b, is the noise standard deviation, and (a(l),....,a(P)) are the
coefficients of the linear predictor to be determined. The resulting transfer function of the system
used to generate x(#) from the white noise input is given by taking the Z-transform of Eq. (3.1):

X(2) by
H(2)= = . 2
W) 1+az '+ +az™* 3.2
The correlation function R (k) can be obtained from x(#), which leads to:
R (K)=-a,R (I-1)-a,R (I-2)-.... ~a R (k-P)+b,R, (k). (3.3)

The cross-correlation R, (k) can be expressed as the convolution of the impulse response A(#) of the
AR system with the autocorrelation of the noise input, which leads to the following expression:

R, (K)=02h*(-F). (3.4)

Recall that A(n) is the impulse response of a causal filter, therefore A(#1) is non zero for positive lags
only. In addition, using the Initial Value Theorem, leads to:




h(0)=lim___H(z)=b, (3.5)

Z—>00

Thus, Eq. (3.3) becomes:
R (k)+aR (k-1)+...a pr(k—P) =|b,F0? 3(k). (3.6)

Expressing Eq. (3.5) for k=1,...,P leads to the set of Yule Walker equations:

Rx(O) Rx(—l) Rx(—P) 111 ofvlbolz

R(1) R(0) .. R(-P+Dia| | ¢ 3.7

R(P) RP-1) . RO |fs | 0 | ;

The set of AR coefficients can then be derived by solving the above matrix equation. In practical
applications the correlation function is estimated from the observed data, and various estimation
procedures have been considered [10]. This study uses the covariance approach to estimate the
correlation lags as this procedure makes no assumption about the data outside the windows of
interest. Thus, the estimated correlation function is obtained by the following computation:

1 At
R"(k)zﬁzp x *(n-k)x(n),

where N represents the length of the window used for the correlation lag estimates. The spectrum
of the modeled signal obtained using the AR coefficients is given by:

2
0w|b0|2
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3.b Model Order Selection

Selecting the order of an AR model is a difficult task, as the best choice is usually not known,
and trial and error are sometimes used. If the data is truly described by a finite order AR model,
theoretically the variance should become constant once the model order is reached. In practice this
is not usually true for a variety of reasons. Therefore, several criteria have been developed to address
this problem. The four most well known are: Akaike’s Information theoretic Criterion (AIC),
Parzen’s criterion of Autoregressive transfer (CAT); final prediction error (FPE), and Schwartz and
Rissanen’s minimum description length (MDL) criterion [11]. All four procedures estimate the “best”




model as that obtained at the minimum of the specified criterion function. The sperm whale data was
used to set the AR model order because it is the data with the broadest bandwidth of the signals
considered, and results are shown in Figure 3.1. Results indicate some variation in the estimated
“best” model order, (best order obtained with AIC is 27, with MDL is 22, with CAT is 26, and with
FPE is 26). As aresult, we chose an AR model order equal to 25.

3.c Reduced-Rank Method

The main idea behind the reduced-rank method is to compute a truncated inverse of Eq. (3.7)
using the Singular Value Decomposition (SVD). This process separates the contribution due to the
noise only from that due to the signal-plus-noise data, thereby, improving the quality of the estimated
AR coefficients, by stabilizing the inverse [10]. The reduced-rank (i.e., the rank of the truncated
inverse obtained using the SVD decomposition) was chosen by selecting a visual gap in the singular
values distribution of the data correlation matrix. Figures 3.2 to 3.7 illustrate typical singular value
distributions obtained for the data considered in our study. The estimated reduced-rank varied
between 2 and 17 for the data under study, where the smallest ranks was found for underwater
earthquake and humpback data and the highest was found for sperm whale data, as listed in Table 3.1
below. Note that the sperm whale required the highest rank, as it is the signal with the broadest
bandwidth among all signals considered.

o a\)efége number bf singular ]
|.values retained

Pilot whale 12
Killer whale 10
Sperm whale 17
Gray whale 15
Humpback whale 2

Earthquake 2

Table 3.1. Typical number of singular values selected for retention for
each class of signal.
4. Adaptive Noise Filtering

Some of the underwater signals under study were buried in noise, and we attempted to
decrease the effect due to wideband noise by applying an adaptive line enhancement (ALE) pre-
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processing step before computing the AR parameters. The ALE filter is designed to separate
narrowband from wideband signals based on the Least Mean Square (LMS) algorithm [12].

However, this pre-processing step was successful only on four classes of underwater signals (those
which were the most narrowband in nature), while it performed poorly when applied to the other two
more wideband signals. As a result, the overall classification rates did not improve significantly when
applying this pre-processing step, and it was not pursued further in this study. Several alternatives
for denoising the data are possible. A follow-on study investigates the application of wavelet-based
techniques to denoise the data, see [15] for further details.

5. Wavelet Transformations

5.a Introduction

Wavelet transforms have numerous applications in signal processing, such as coding, image
processing, compression, and classification, and numerous references are available [2,4,5,6]. Inour
study we are interested in extracting a compact (i.e., "small") set of feature coefficients which can be
used to classify the different signals with a high level of accuracy (i.e., over 90% recognition rate).
In addition, we expect our classification procedure to be relatively non-sensitive to time
synchronization issues. Figures 2.1 to 2.7 show that the signals under study are non-stationary and
vary in frequency content, magnitude, and background noise. Spectrograms (which represent the
magnitude of the short-time Fourier Transform) have been used extensively to extract information
from such time-varying signals, as they are easy to interpret.

The Continuous Wavelet Transform (CWT) is best understood as an extension of the Short-
Time Fourier Transform (STFT), where the signal is decomposed using sinusoidal basis functions.
The STFT Transform of the signal x(t) is given by:

SN)= f x(v)g "(v-t)e P¥dr, (5.1)

and displays the evolution of the signal frequency over time. Many different window functions g(?)
may be selected, and the choice will affect the resolution of the resulting transform. In all cases, the
time-frequency resolution of the STFT is limited by the uncertainty principle which states that:

1
AtAfe—.
/ 4T

The choice of the time window g() fixes At, and thus fixes Af over the whole transformation.
Therefore, the STFT cannot provide both good time resolution (which requires short time windows),
and good frequency resolution (which requires long time windows). The CWT provides an attractive
alternative to the spectrogram information as it decomposes the signal using a basis, where the time
and frequency resolution vary, thereby allowing for variable time and frequency resolution, while
keeping the time-frequency resolution product fixed.




The Continuous Wavelet Transform (CWT) of a signal x(?) is given by:

W (ba)y=— [+ ¥ (i, 52)
a’. a

where () is the mother wavelet, which must satisfy specific mathematical properties [13]. The
parameter ¢ denotes translation in time, and the scale factor a denotes dilation in time. The factor
1" a normalizes the energy of the CWT. Two important characteristics of wavelets are that; 1) the
wavelet function #{?) be of finite duration, and 2) the wavelet function ¥{?) have zero average value
(like that of Fourier sinusoids). The second characteristic requires that the basis functions oscillate
above and below zero, and gives rise to the name wavelet or small wave [15]. Although there are
numerous functions that meet the necessary properties to be classified a wavelet only a few classes
have thus far been shown to be of general interest in signal processing. The Haar, Daubechies, Coiflet,
and Symmlet are a few of the more popular classes and are shown in Figure 5.1. Various bases were
originally considered in our study. However, we decided to use the Symmlet-8 and Coiflet-3 bases
because they were among those readily available to use from [14], and they did not significantly fail
on any of the classes of signals considered here. The scale factor a in wavelet analysis plays an
analogous role to inverse frequency in Fourier analysis, and it controls the time and frequency
resolution of the transform. Thus, as a decreases, the wavelet function #{#/a) becomes more
concentrated in the time domain, and thus more expanded in the frequency domain. Similarly, as a
increases, the wavelet function ¥(#/a) becomes more expanded in the time domain, and thus more
concentrated in the frequency domain. Figure 5.2 illustrates this behavior when using a Symmlet-8
mother wavelet. The magnitude of the WT called the scalogram, in analogy with the spectrogram.,
is a representation of the signal energy in the time-scale plane. The scalogram has high time
resolution at high frequency and high frequency resolution at low frequency, as illustrated in Figure
5.3. Further insight to the multiresolution capability of the CWT can be gained by comparing the
influence of signals in the time - scale plane. Figure 5.4 shows a comparison of the regions of
influence of the spectrogram and scalogram for two different signals. The top plots display an impulse
function at t =t, . Note that the scalogram permits a narrow time localization of this signal in the low
scale portion of the plot. The lower plots display the regions of influence for a signal composed of
two sines at frequencies f1 and f2. Note the CWT has better frequency resolution at high scales and
poorer frequency resolution at low scales.

5.b The Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is defined by discretizing the parameters 7 and a of
the CWT. by:

B A . n=b
Wx(anb)" E - x(n) bd (—a_)a (53)

n=1 a

where a, b, n are the discrete versions of a, 1, and t, of Eq. (5.2) respectively. The scaling factor a




is further restricted to be given by:
a=a’ J=01.. (5.4

The choice of a, will govern the accuracy of the signal reconstruction via the inverse
transform. It is popular to choose a,= 2 because it provides small reconstruction errors and permits
for the implementation of fast algorithms [13]. Setting a = 2’ produces octave bands called dyadic
scales. At each scale as J increases, the analysis wavelet is stretched in the time domain, and
compressed in the frequency domain by a factor of two, as shown in Figure 5.2. As a result, the DWT
output at each dyadic scale J produces more precise frequency resolution and less precise time
resolution. Also note that as J increases the translation term b/2’ becomes smaller, and thus & must
necessarily increase to cover all translations. The result is that the DWT output grows in length by
a factor of two at every scale. This produces extremely large DWT vectors at the higher scales. This
computational difficulty can be alleviated by realizing that at each successive octave, the DWT output
contains information at half the bandwidth compared to that of the previous scale, and thus can be
sampled at half the rate according to Nyquist’s rule [14]. This decimation (or subsampling) is
accomplished mathematically by restricting values of the shift parameter b. Letting b =k 2’ where
k is an integer, and replacing a by 2’ yields the decimated DWT given by:

N
@R =Y = xn) T @n-h), (5.6)

n=1 a

where J=0,.....log,(N) and k=1,.... N - 27 . The term k-2 in the argument of the DWT,
indicates that W(a,b) is decimated by a factor of two at each successive scale J by retaining only the
even points. The resulting DWT coefficients forma [Jxk ] matrix where each element represents
the similarity between the signal and the analysis wavelet at scale j and shift &. It is common practice
therefore to rewrite Equation (5.6) explicitly in terms of the parameters j and &, leading us to the
decimated DWT equation defined as:

J xrm-J.
W, = Z V1727 x(n) ¥* (27 n-k). (5.7
The Symmlet-8 wavelet is shown at various scales j and shifts & in Figure 5.5.

An efficient way to implement the DWT of Eq. (5.7) using filters was developed by Mallat
[13,15]. This scheme uses a complementary pair of lowpass (LP) and highpass (HP) filters. These
filters equally partition the frequency axis and are known as quadrature mirror filters (QMF) [13].
Since each filter output covers only half the original frequency range of the input, each can be
decimated by a factor of two by retaining only the even points. The combined decimated output of
the two filters is a data set which comprise the DWT coefficients at the first scale. This process is
repeated on the LP filter output to produce further decomposition of the signal into LPHP and LPLP
parts at the next scale. The filtering and decimating operations can be continued until the number of
samples is reduced to two. At each successive iteration (scale) the frequency range of the output is
reduced in half by the LP filter, and the frequency resolution is improved by the decimation. Figure
5.6 shows how a data set of 2’ samples can be decomposed to produce a maximum of j levels of




transform coefficients. Figure 5.7, displays the resulting transformed coefficients in a tree structure.
Note that movement down the tree relates to lower frequency (higher scale) coefficients.

The decimated DWT described above will produce an orthogonal decomposition of the input
signal only if the QMF pairs (i.e., the wavelets) are properly chosen. Such filter pairs have to possess
specific mathematical properties and exhibit restrictive symmetry characteristics [13]. Although the
DWT filtering operations are linear and time invariant, the decimation combined with the filtering
results in a time-variant system. Recall, that a time variant system implies that shifts in the system
input will not produce an equivalent shift in the system output [13]. In fact, a shift of even a few
samples in the signals starting point can completely change the wavelet decomposition coefficients.
This difficulty complicates the performance of signal detection, feature extraction, and classification
in the wavelet transform domain [14,15], and a number of proposals have been made to deal with the
time - variant nature of the wavelet transform [15].

A non-orthogonal transform was also considered in our study, as such transforms may have
advantages in applications where the redundancy makes the information easier to extract [2,4]. The
non-orthogonal transform considered was the undecimated A-trous implementation of the WT using
a Morlet-type mother wavelet, as introduced in Shensa [4]. The Morlet wavelet is given by:

Y(r)=exp(jvi)exp(-B%%/2),

where 3 and v respectively represent the roll-off factor and center frequency of the wavelet [4].
This undecimated transform has the additional advantages of being translation invariant. In addition,
the user may vary the spectral partitioning by changing the number of voices per octave, where voices
can be viewed as sub-band filters defined within a given scale, while it is fixed by the choice of basis
in the orthonormal decomposition [4]. Figures 5.8 to 5.11 respectively display the spectral
partitioning obtained with Coiflet-3, Symmlet-8, and the A-Trous decomposition with four and five
voices for a four scale decomposition, for the following Morlet wavelet parameters used in this study;
rolloff parameter =.15 and center frequency n=.857. Note that the A-Trous decomposition allows
for much narrowband frequency partitioning than the orthonormal decompositions do.

5.c Feature Extraction

We are interested in keeping the sets used to describe each of the different classes as compact
as possible, and to avoid time synchronization problems between the different signals investigated.
Lemer et. al. showed in a preliminary study that using energy quantities based on Daubechies
wavelets of order 6 improved performances for the specific signals they considered [3]. Expanding
on this idea, we defined energy-type parameters from the wavelet coefficients and used these
quantities as feature parameters for the classification scheme. When using orthogonal transforms,
we defined the average energy E; computed from the wavelet coefficients obtained at a given scale
I for scales 1 to 7, and the complementary average energy contained in the low-pass operation. Thus,
average wavelet-based quantities £, for scale / used as feature parameters were defined as:

8
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where c;, represents the k" wavelet coefficient obtained at scale /, and the summation operation is
done over all wavelet coefficients available at a given scale. This study considers scales / from 1 to
7. A similar expression is used to derive the 2™ set of coefficients from the low-pass operations in
the same range of scales. As a result, a seven scale decomposition leads to a set of 14 real energy-
type feature coefficients. Such a choice insures to keep the number of feature coefficients low, and
avoids potential problems dealing with time-domain synchronization. Two orthonormal bases are
used in the study and their performances compared; Coiflet-3 and Symmlet-8 bases [1].

When using the non-orthogonal transform, the feature parameters chosen for the classification
scheme are the set of average wavelet-based coefficients 4;; obtained at a given scale / and voice J,
where 4;; is defined as: '

1 2 . . _
Ai.f‘;zk:lcm;kl’ i=1,..,7, j=0,..m-1.

The parameter c;;; represents the k™ wavelet coefficient obtained at scale  and voice j, and the
summation operation is conducted over the range of wavelets coefficients obtained at a given scale
and voice. Thus, a seven scale decomposition using 72 voices leads to 7m input coefficients. Several
configurations of the A-trous implementation are investigated in the study, using between 4 to 7
voices. Experiments were conducted using the roll-off parameter B=.15 and the center frequency
1=857. Results showed that the best overall classification results among the various implementations
considered were obtained when using six voices per scale, as illustrated in Table 6.1.

6. Classification

6.a Network Architecture

A back-propagation neural network configuration is used in the study. Back-propagation
networks are multilayer feedforward networks, which learn during supervised training sessions, where
input feature vectors have target outputs. The number of input and output elements in the network
is usually equal to the number of different classes under investigation. Theoretically, there should be
only two possible values for each output of the network; either a "1" or a "0". Therefore, the ideal
output level for all outputs should be all zero except for the output corresponding to the correct class,
which should be equal to 1. In practice, the actual output levels may vary between "0" and "1".

Learning actually take place when input vectors are propagated through the network in a
forward direction on a layer-by-layer basis to the output layer. The output layer is compared to the
target classification and the error is back-propagated through the network layer by layer, neuron by




neuron, updating the connection weights which contain the memory of the system. Once the network
converges on a stopping criterion, the weights become fixed and the network can be used for testing.
The NN implementation used in this study used hyperbolic tangent for transfer function, and the
normalized-cumulative delta learning rule to update the learning coefficients. In addition, avoiding
saturation of the transfer function is handled by scaling the input values in the range of £2 [9]. The
number of Processing Elements (PEs) in the hidden layers, and the number of hidden layers are
important decisions in NN architecture. Most back-propagation networks will have one or two
hidden layers with the number of PEs in the hidden layers falling in between the number of input
values and the number of PEs. The number of PEs depends on the complexity of the relationships
between different classes, as signals that are not easily separated may require more PEs to distinguish
between them. A common rule of thumb to estimate the number of hidden layers needed by a back-
propagation network is:

P number of training files
S(m+n)

k]

where:
his the number of PEs in the hidden layer,
m is the number of PEs in the output layer,
n is the number of PEs in the input layer. [9]

However, applying the above rule led to networks which did not converge in any reasonable time for
our data. The architecture of the network which constantly converged in a reasonable time frame for
this study included a first hidden layer with the number of PEs close to the number of inputs, followed
by a second hidden layer with 15 PEs, and six output elements.

6.b Classification Rates

This study uses classification rates as the overall measure of performance for the network.
The idea behind the classification rate is for the network to pick a winner, which is simply the output
PE with the largest value. Thus, if we compare the winner with the target we have a binary yes-or-no
answer for correctness in classification. The neural network software used in this study, NeuralWorks
II/ Professional Plus [9] has such an instrument built in the algorithm. The NeuralWorks
classification rate instrument provides a two-dimensional comparison of desired results to actual
network response. In our case, it provides a 6*6 matrix, as there are six different classes under study.
The output response of the network is thresholded with a 1-of-N transformation, where the winner
output is valued at 1, and the others are valued at 0. The sum of the winners are divided by the
number of input sets per output category, and the overall classification rate of the entire network is
the average of the six classifications rate per category. However, the classification rate doesn’t
indicate what the output PE levels are, and what their range is. Such information is useful as it allows
the designer to quantify the quality of the classification, and to adjust the threshold level above which
classification to a specific class may be assigned if desired. PE output levels are presented in Tables
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6.2106.9.
6.c Classification Results

The study was conducted in two phases. The first phase of the study investigated the
application of AR coefficients as feature parameters, while the second phase investigated the
application of wavelet-type quantities as feature vectors. The same data was used for both phases,
however, a smaller selection of training and testing files selected from the data was used for the first
phase for all classes except the sperm whale class, which explains why the AR classification rates are
based on a different number of training and testing files from those obtained for the Wavelet-based
schemes. During the second phase of the study, each training class contained 87 signals, and an
average of 50 sets per testing class was used for the testing phase.

Table 6.1 presents the overall classification rates obtained for the each of the feature
extraction schemes considered in this study, where each network configuration is described in terms
of the number of inputs/number of PEs in the first hidden layer/number of PEs in the second hidden
layer/number of output nodes. Tables 6.2 to 6.8 present the detailed results obtained for each scheme.
For clarity purposes, a detailed explanation of Table 6.2 is presented next, Tables 6.3 to 6.8 follow
the same presentation. The first row in Table 6.2 shows the number of testing files presented to the
NN for classification in each class. The first column indicates the number of testing files classified
in a specific class. All rows show the mean and standard deviation (STD) obtained at each output
node; the classification rate CR (in percentage), and the number of files classified in each specific
signal class. Rows two to seven present individual performance results obtained for each class. For
example, row number two shows that 38 files were classified as “sperm whale”, and that 28 out of
these 38 files were correctly classified, leading to a classification rate for that class CR=80%.
Misclassified sperm whale data was classified as, either killer whale (5 files), or earthquake data (2
files). Recall that ideal output node levels should be either 1 or 0, however, in practice the levels are
between 0 and 1. For example, the average output level obtained for the testing sperm whale data
is 0.6887 and its standard deviation is .34. In addition, the sperm whale output node level
significantly drops down to around 0-.05 when presented with other types of signals.

Classification results using AR coefficients
Classification results obtained when using AR coefficients as feature parameters are presented
in Table 6.2. Results show that using AR coefficients lead to a relatively low classification rate equal

to 84.76%.

Classification results using orthonormal wavelet coefficients

Classification results obtained for the orthonormal Wavelet Transforms considered are shown
in Tables 6.3 and 6.4. We were unable to explain the difference in classification performances
obtained while the frequency partitioning for the two bases is so similar. Further testing would be
needed to explain such a difference further.
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Classification results using non-orthonormal wavelet coefficients

Classification results obtained for the A-Trous Wavelet Transforms considered are shown in
Tables 6.5 to 6.8 for Morlet wavelet with 4 to 7 voices. Results show that classification rates are
higher than those obtained with AR and orthonormal wavelet transforms (between 93% and 96%).
Note that this NN implementation may be viewed as an energy-type classifier, as the feature
parameters chosen represents a measure of the average energy obtained in a given frequency range.
Thus, the finer the spectral partitioning, the better the classification rates. Using multiple voices in
the non-orthogonal transformation leads to a finer frequency decomposition of the signal information,
which leads to a better match of the spectral information contained in the data under study.

7. Conclusions

This study compared the classification rates obtained when using Wavelet Transforms and
AR modeling to select feature parameters as back-propagation NN inputs for classification purposes.
Results show that the best overall classification rates are obtained when using the undecimated non-
orthogonal A-trous implementation with multiple voices. These results are to be expected as the
feature extraction scheme chosen for the Wavelet transforms can be viewed as an "energy-based"
classifier, where the choice of the basis specifies the type of frequency partitioning used. The A-
Trous implementation is well matched to the narrowband underwater data under study, as it leads to
a finer frequency resolution than that obtained using orthogonal bases, which results in higher overall
classification performances.

The data used in this study contained significant additive noise. An initial attempt to extract
the signal form its noisy environment to increase the separability of the classes by applying a basic

.ALE filter. This adaptive scheme performed very poorly on wideband underwater signals (sperm

whale and underwater earthquake), which contributed to an overall degradation of the classification
performances. An improvement in the denoising could potentially be achieved by employing a
wavelet-based denoising scheme based on work originally proposed by Donoho et. al. [5,15].
Further details regarding denoising schemes and their applications to underwater signals may be
found in [15].
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Figure 2.5. Spectrogram of gray whale data; normalized frequency (f=8kHz), normalized time
(number of samples).
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Figure 2.6. Spectrogram of humpback whale data; normalized frequency (f;=8kHz), normalized
time (number of samples).
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Figure 2.7. Spectrogram of underwater earthquake data; normalized frequency (f=8kHz),
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Figure 5.11. Spectral partitioning obtained for the Symmlet-8 wavelets.
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Classification Technique Neural Network Overall Classification
input PE/ Rate
hidden layer 1/ hidden
layer 2/ output
AR coefs 25/20/15/6 84.7%

ALE & AR coefs 25/20/15/6 83.7%
WT; Symmlet 8 14/14/10/6 84.67%
WT; Coiflet 3 14/14/10/6 78.2%
A-Trous; 4 voices 28/28/15/6 93.1%
A-Trous; 5 voices 35/20/15/6 93.4%
A-Trous; 6 voices 2/42/15/6 96.7%
A-Trous; 7 voices 49/49/15/6 95.1%

Table 6.1. Overall classification results
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Table 6.2: Classification Performance Obtained Using Reduced Rank AR Coefficients
Test || Sperm Killer Humpback | Gray Pilot Earthquake
= Input Input Input Input Input Input
Files || 35 files 35 files 35 files 35 files 35 files 35 files
Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
[} Number of Files
Sperm Whale 0.6887 0.2132 0.0132 —0.0024 --0.0488 0.0627
Output (0.3339) (0.2791) (0.1598) (0.1506) (0.1581) (0.2187)
38 Files 80% 25.71% 0% 0% 2.86% 0%
28 files 9 files 1 file
Killer Whale 0.0547 0.9824 0.0556 —0.0676 —0.0924 - | —0.0131
Output (0.3055) (0.1273) (0.1085) (0.0783) (0.0546) (0.1268)
31 Files 14.29% 68.57% 0% 5.71% 0% 0%
5 files 24 files 2 files
Humpback Whale 0.0057 —0.0438 0.9387 —0.0796 0.0329 0.0286
Output (0.0713) (0.1647) (0.1959) (0.0695) (0.0941) (0.1801)
36 Files 0% 0% 94.29% 0% 8.57% 0%
33 files 3 files
Gray Whale -0.0339 0.0103 -0.0765 0.8505 0.1156 —0.0587
Output (0.1194) (0.2620) (0.0619) (0.3716) (0.2962) (0.0773)
32 Files 0% 2.86% 0% 85.71% 2.86% 0%
1 file 30 files 1 file
Pilot Whale 0.0357 —0.0489 —0.0145 0.0433 0.7589 —0.0169
Output (0.2328) (0.1247) (0.2400) (0.2217) (0.3719) (0.1910)
31 Files 0% 0% 0% 8.57% 80% 0%
3 files 28 files
Earthquake —0.0988 —0.0345 0.0064 -0.0074 0.0198 0.9146
Output (0.0224) (0.0204) (0.0690) (0.0357) (0.0247) (0.1061)
42 Files 5.71% 2.86% 5.71% 0% 5.71% 100%
2 files 1 file 2 files 2 files 35 files
Overall classification rate: 84.67%
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Table 6.3: Classification Performance Obtained Using Coiflet 3 Wavelet Basis
Test || Sperm Killer Humpback | Gray Pilot Earthquake
= Input Input Input Input Input Input
Files || 50 files 50 files 50 files 50 files 50 files 50 files
Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
[} Number of Files
Sperm Whale 0.8001 0.3167 —-0.0118 —0.0220 —0.0075 0.0043
Output (0.2951) (0.3426) (0.0550) (0.1354) (0.0622) (0.1033)
39 Files 70.73% 4.88% 0% 4.88% 0% 0%
35 files 2 files 2 files
Killer Whale 0.0866 0.6478 —0.0101 0.1137 —-0.0179 - | —0.0693
Output (0.2688) (0.2769) (0.1388) (0.2751) (0.0828) (0.0513)
58 Files 26.09% 75.61% 0% 10% 4.88% 0%
13 files 38 files 5 files 2 files
Humpback Whale 0.0181 —0.0020 0.9006 —0.0476 —0.0225 0.0535
Output (0.0430) (0.0283) (0.1915) (0.0365) (0.0285) (0.2207)
48 Files 0% 4.88% 90.24% 0% 2.44% 0%
2 files 45 files 1 file
Gray Whale ~0.0229 0.2802 —0.0180 0.4671 0.2061 —0.0174
Output (0.2280) (0.1779) (0.0808) (0.1797) (0.2006) (0.0328)
49 Files 4.88% 16.43% 0% 65.85% 12.2% 0%
2 files 8 files 33 files 6 files
Pilot Whale —0.0878 0.0395 0.0464 0.0994 0.7962 —0.0571
Output (0.0630) (0.1911) (0.1183) (0.2053) (0.3190) (0.0561)
58 Files 0% 0% 0% 19.85% 81.69% 14.63%
10 files 41 files 7 files
Earthquake —0.0551 —0.0518 ~0.1071 —0.0899 0.0662 0.8424
Output (0.0579) (0.0773) (0.0278) (0.0535) (0.1589) (0.3679)
48 Files 0% 0% 10% 0% 0% 85.37%
5 files 43 files
Overall classification rate: 78.24%




Table 6.4: Classification Performance Obtained Using Symimlet 8 Wavelet Basis

Test || Sperm Killer Humpback | Gray Pilot Earthquake
- Input Input Input Input Input Input
Files || 50 files 50 files 50 files 50 files 50 files 50 files
Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
[ Number of Files
Sperm Whale 0.8362 0.1897 —0.0362 0.0417 —0.0590 —0.0154
Output (0.2347) (0.2012) (0.0334) (0.1776) (0.0716) (0.0381)
62 Files 90.2% 22% 0% 10% 0% 0%
46 files 11 files 5 files
Killer Whale 0.1990 0.6077 0.0042 0.0844 —0.0039 -0.0392
Output (0.2662) (0.3677) (0.0842) (0.2198) (0.1077) (0.0526)
46 Files 1% 64.71% 0% 22% 0% 0%
2 files 33 files 11 files
Humpback Whale —0.0330 0.0050 0.9086 —0.0008 —0.0278 0.0566
Output (0.0451) (0.1858) (0.2236) (0.0342) (0.0757) (0.2145)
46 Files 0% 0% 92% 0% 0% 0%
46 files
Gray Whale 0.0926 0.2735 0.0056 0.4547 0.0996 0.0097
Output (0.2294) (0.1955) (0.0339) (0.2418) (0.2053) (0.1499)
41 Files 4% 12% 0% 62% 4% 0%
2 files 6 files 31 files 2 files
Pilot Whale —0.1071 —0.0576 —-0.0124 0.1022 0.9957 —0.0073
Output (0.0213) (0.0826) (0.0385) (0.1670) (0.1474) (0.0776)
50 Files 0% 0% 0% 4% 96% 0%
2 files 48 files
Earthquake -0.0188 -0.0151 -0.0114 —0.0306 ~0.0135 1.0203
Output (0.0522) (0.0558) (0.0337) (0.0630) (0.0603) (0.1275)
55 Files 0% 0% 8% 2% 0% 100%
4 files 1 file 50 files
Overall classification rate: 84.66%
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Table 6.5: Classification Performance Obtained Using the A-Trous Algorithm; 4 Voices per Octave

Test || Sperm Killer Humpback | Gray Pilot Earthquake

= Input Input Input Input Input Input

Files || 51 files 51 files 51 files 51 files 51 files 51 files

Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
13 Number of Files
Sperm Whale 1.1055 —0.1058 0.1253 —0.0932 0.2603 -0.0588
Output (0.0768) (0.0803) (0.2209) (0.1125) (0.2989) (0.0481)
50 Files 98.04% 1.96% 0% 0% 0% 0%
50 files 1 file
Killer Whale —0.0279 0.8835 —0.0578 -0.0378 0.0317 -0.0599
Output (0.2152) (0.2500) (0.1303) (0.1090) (0.2125) (0.1133)
50 Files 0% 90.20% 0% 0% 0% 0%
46 files
Humpback Whale —0.0081 0.0571 1.0518 —0.0086 —0.0540 0.1096
Output (0.0680) (0.1544) (0.1237) (0.0826) (0.0655) (0.1198)
51 Files 0% 0% 100% 0% 0% 0%
51 files
Gray Whale . —0.0709 —0.0566 —-0.1007 1.0186 —0.0055 0.0018
Output (0.0672) (0.0845) (0.0424) (0.1749) (0.1646) (0.1737)
53 Files 0% 0% 0% 98.04% 5.88% 0%
50 files 3 files
Pilot Whale 0.0668 —0.0250 0.0008 0.1808 0.7893 —0.0273
Output (0.1091) (0.0857) (0.0876) (0.1753) (0.2384) (0.1775)
52 Files 1.96% 7.84% 0% 0% 92.16% 0%
1 file 4 files 47 files
Earthquake —0.0799 —0.0862 —0.1247 0.0248 0.2086 1.0175
Output (0.0371) (0.0699) (0.0009) (0.1136) (0.2744) (0.2166)
53 Files 0% 0% 0% 1.96% 1.96% 100%
1 file 1 file 51 files
Overall classification rate: 96.41%
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Table 6.6: Distribution of the Neural Network Classifications Obtained Using the A-Trous Implementation;
5 Voices per Scale -
Test || Sperm Killer Humpback | Gray Pilot Earthquake
= Input Input Input Input Input Input
Files || 51 files 51 files 51 files 51 files 51 files 51 files
Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
Y Number of Files
Sperm Whale 1.0772 —0.0993 0.1176 -0.1176 0.2158 —0.0244
Output (0.1719) (0.0937) (0.1915) (0.0225) (0.2746) (0.0847)
50 Files 98.04% 0% 0% 0% 0% 0%
50 files
Killer Whale —0.0241 0.8539 —0.0205 0.0344 0.0585 —0.0349
Output (0.2131) (0.2843) | (0.1391) (0.2557) (0.2295) (0.0497)
50 Files 0% 86.27% 0% 5.88% 1.96% 0%
44 files 3 files 1 file
Humpback Whale 0.1622 —0.0119 1.0302 0.0658 0.0883 0.0450
Output (0.3230) (0.0822) (0.2397) (0.2254) (0.2702) (0.1794)
49 Files 0% 0% 96.08% 0% 1.96% 0%
49 files 1 file
Gray Whale -0.0877 0.0312 —0.0973 0.8953 —0.0364 0.0257
Output (0.0376) (0.2181) (0.0332) (0.3045) (0.1775) (0.1469)
53 Files 0% 11.76% 0% 92.16% 7.84% 0%
6 files 47 files 4 files
Pilot Whale —0.0437 —0.0075 0.0159 0.0592 0.7276 0.0036
Output (0.1527) (0.1035) (0.0980) (0.1890) (0.3100) (0.0991)
51 Files 1.96% 1.96% 0% 1.96% 88.24% 0%
1 file 1 file 1 file 45 files
Earthquake —0.0660 —0.1115 —0.1215 0.0119 0.2458 1.0710
Output (0.0500) (0.0310) (0.0076) (0.1349) (0.3796) (0.0951)
53 Files 0% 0% 3.92% 0% 0% 100%
2 files 51 files
Overall classification rate: 93.46%
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Table 6.7: Classification Performance Obtained Using the A-Trous Implementation; 6 Voices per Scale

Test || Sperm Killer Humpback | Gray Pilot Earthquake

== Input Input Input Input Input Input

Files || 51 files 51 files 51 files 51 files 51 files 51 files

Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
U Number of Files
Sperm Whale 1.1107 —0.0848 0.1438 -0.1224 0.2516 —0.0579
Output (0.0751) (0.1879) (0.0100) (0.3110) (0.0670) (0.0481)
50 Files 98.04% 0% 0% 0% 0% 0%
50 files
Killer Whale —0.0735 0.9539 0.0807 -0.0271 —0.0321 —0.0340
Output (0.1462) (0.2745) (0.1903) (0.1585) (0.0450) (0.1133)
51 Files 0% 98.04% 0% 1.96% 0% 0%
50 files 1 file
Humpback Whale —0.0468 0.2230 1.0638 0.0304 —0.0205 0.0399
Output (0.0856) (0.2996) (0.1425) (0.1423) (0.1759) (0.1198)
49 Files 0% 0% 96.08% 0% 0% 0%
49 files
Gray Whale —0.0916 0.0776 —0.1028 0.9014 —0.0263 0.0083
Output (0.0480) (0.3277) (0.3471) (0.1959) (0.1633) (0.1737)
52 Files 0% 0% 0% 96.08% 5.88% 0%
49 files 3 files
Pilot Whale 0.0221 —0.0585 0.0136 0.0238 0.8450 —0.0198
Output (0.2134) (0.0892) (0.2466) (0.3758) (0.1460) (0.1775)
48 Files 1.96% 1.96% 0% 0% 92.16% 0%
1 file 1 file 46 files
Earthquake —0.1000 —0.1159 —0.1233 0.1588 0.1851 1.0276
Output (0.0249) (0.0198) (0.2570) (0.3106) (0.1454) (0.2166)
53 Files 0% 0% 3.92% 1.96% 1.96% 100%
2 files 1 file 1 file 51 files
Overall classification rate: 96.73%
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Table 6.8: Classification Performance Obtained Using the A-Trous Implementation; 7 Voices per Scale
Test || Sperm Killer Humpback | Gray Pilot Earthquake
L= Input Input Input Input Input Input
Files || 51 files 51 files 51 files 51 files 51 files 51 files
Mean
Classification Standard Direction (st)
Results Classification Rate (CR%)
[} Number of Files
Sperm Whale 1.1107 —0.0848 0.1438 —0.1224 0.2516 —0.0579
Output (0.0751) (0.1879) (0.0100) (0.3110) (0.0670) (0.0481)
51 Files 100% 0% 0% 0% 0% 0%
51 files
Killer Whale —0.0735 0.9539 0.0807 —0.0271 —0.0321 —0.0340
Output (0.1462) (0.2745) (0.1903) (0.1585) (0.0450) (0.1133)
57 Files 0% 98.04% 0% 13.73% 0% 0%
50 files 7 files
Humpback Whale —0.0468 0.2230 1.0638 0.0304 —0.0205 0.0399
Output (0.0856) (0.2996) (0.1425) (0.1423) (0.1759) (0.1198)
50 Files 0% 0% 98.04% 0% 0% 0%
50 files
Gray Whale —0.0916 0.0776 —0.1028 0.9014 —0.0263 0.0083
Output (0.0480) (0.3277) (0.3471) (0.1959) (0.1633) (0.1737)
49 Files 0% 1.96% 0% 84.31% 9.80% 0%
1 file 43 files 5 files
Pilot Whale 0.0221 —0.0585 0.0136 0.0238 0.8450 —0.0198
Output (0.2134) (0.0892) (0.2466) (0.3758) (0.1460) (0.1775)
47 Files 0% 0% 0% 1.96% 90.20% 0%
1 file 46 files
Earthquake —0.1000 —0.1159 -0.1233 0.1588 0.1851 1.0276
Output (0.0249) (0.0198) (0.2570) (0.3106) (0.1454) (0.2166)
52 Files 0% 0% 1.96% 0% 0% 100%
1 file 51 files
Overall classification rate: 95.098%
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